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Abstract

Class-incremental 3D object detection demands a 3D de-
tector to locate and recognize novel categories in a stream
fashion while preserving its base detection ability. However,
existing methods require delicate 3D annotations for learn-
ing novel categories, resulting in significant labeling costs.
To this end, we explore a label-efficient approach called
Weakly Incremental 3D Detection (WI3D), which teaches
a 3D detector to learn incrementally with off-the-shelf vi-
sion foundation models. We propose a novel dual-teaching
framework incorporating both intra-modal and inter-modal
knowledge from pseudo labels and feature space. Specifi-
cally, our framework features a class-agnostic pseudo-label
refinement module, designed for generating high-quality 3D
pseudo labels. This module is built on a lightweight trans-
former that models the spatial relationships between pseudo
labels and their interactions with rich contextual informa-
tion in point clouds. Additionally, we introduce a cross-
modal knowledge transfer module to enhance the represen-
tation learning of novel classes, along with a reweighting
knowledge distillation strategy that dynamically assesses
and distills knowledge from previously learned categories.
Extensive experiments show that our approach can effi-
ciently learn novel concepts while preserving knowledge of
base classes in WI3D scenarios, and surpass baseline ap-
proaches on both SUN-RGBD and ScanNet.

1. Introduction
Existing 3D detectors [32, 37, 41, 45, 47] have achieved
remarkable performance in detecting objects within a pre-
defined category set from the 3D environment. However,
novel-class objects will emerge when deploying 3D detec-
tors in wild and dynamic scenarios. To adapt a well-trained
3D detector to novel classes, a straightforward approach
would be to directly tune the model on novel-class samples.
However, the direct tuning typically results in the degra-
dation of a detector’s ability to detect base classes, a phe-
nomenon known as catastrophic forgetting [7, 12, 27, 50].
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Figure 1. Illustration of previous class-incremental 3D ob-
ject detection (a) and WI3D (b). Previous methods for class-
incremental 3D object detection rely heavily on the continual pro-
visions of human annotations for novel classes in the point cloud
scene. In contrast, we explore WI3D, a new task that introduces
novel concepts to a 3D detector through 2D images to reduce the
cost of annotating the point cloud.

Meanwhile, an alternative strategy involves combining base
datasets with novel ones and retraining the model from
scratch. Nevertheless, this approach becomes impractical
when frequent updates are necessary, as training on the en-
tire dataset would be time-consuming [3]. Recently, incre-
mental learning [23, 31, 39, 46], which studies how to incor-
porate novel classes by training only on novel-class samples
while preventing catastrophic forgetting issues, has become
eminent in various 2D and 3D vision tasks [9, 10, 22, 44].

Prior works [24, 55, 58] have made initial attempts in
the field of class-incremental 3D detection using delicate
3D annotation for novel-class objects. However, acquir-
ing a large number of well-annotated 3D scene data is pro-
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hibitively expensive in both 3D data collection and label-
ing [21, 40]. In light of these considerations, it is mean-
ingful to study whether the capabilities of well-trained 3D
detectors can be extended to recognize new categories with-
out continuous annotation in the point cloud. In this work,
we introduce Weakly Incremental 3D Detection (WI3D),
which incrementally updates the base 3D detector through
cost-effective vision foundation models [18, 20, 26, 51–53],
avoiding the need to revisit 3D labels for novel classes, as
shown in Fig. 1. To the best of our knowledge, we are the
first attempt to leverage pre-trained foundation models for
addressing WI3D, an unexplored yet important problem.

However, it is non-trivial to adapt existing methods for
WI3D. The main difficulty lies in: 1) how to introduce
novel classes to a 3D detector continually using foundation
models, and 2) how to retain base classes knowledge with-
out revisiting any 3D annotations. Recent studies [30, 35]
have made initial attempts to directly generate 3D pseudo
labels from 2D predictions using projection matrix, and uti-
lize these pseudo labels as supervisory signals. However,
these approaches fail to adequately address the significant
noise in the 3D pseudo label derived from the 2D plane
given the additional degrees of freedom. The existence
of such pseudo labels severely deteriorates the detection
performance in WI3D. Furthermore, the widely adopted
knowledge distillation techniques [55, 58] treat different re-
gions of interests equally, leading to the failure to learn dis-
criminative region features among the sparse and cluttered
point cloud scenes.

To address these issues, we propose an effective frame-
work for WI3D, benefiting from the dual teaching of both
intra-modal and inter-modal teachers. The intra-modal
teacher is a base 3D detector trained on a fixed set of cat-
egories, while the inter-modal teacher is an off-the-shelf
yet powerful 2D foundation model. Our framework is su-
pervised by 1) pseudo labels generated by intra-modal and
inter-modal teachers and 2) concept representation space for
both base and novel classes. In practice, we use the inter-
modal teacher to detect novel classes from images as visual
prompts, and then project them into 3D space using the pro-
jection matrix. To obtain more accurate pseudo labels, we
propose a novel pseudo-label refinement module that uti-
lizes the coordinates of coarse proposals and context infor-
mation from point clouds to refine bounding boxes of novel
classes in 3D scenarios. By learning both the intrinsic re-
lationships among pseudo labels and interactions with their
context, our pseudo-label refinement module significantly
enhances the accuracy and reliability of the pseudo labels.

In addition to incrementally teaching a well-trained 3D
detector to detect novel categories explicitly, we also lever-
age an implicit way of supervision by learning in feature
space. We propose an auxiliary cross-modal knowledge
transfer for WI3D, which leverages bipartite matching to

transfer texture-aware information from regions of images
to enhance the 3D object representation. Finally, we explore
a reweighting knowledge distillation strategy that can dis-
cern and select valuable knowledge from existing classes,
leading to further improvements in performance.

To summarize, our contributions are listed as follows:
• We introduce Weakly Incremental 3D Detection (WI3D),

a new task that generalizes a well-trained base 3D de-
tector to learn novel classes with the aid of off-the-shelf
foundation models.

• We analyze the challenges in WI3D and propose an effec-
tive framework that infuses a class-agnostic pseudo-label
refinement module for high-quality pseudo-label genera-
tion and concept representation learning in feature space
for both base and novel classes.

• Extensive experiments on two benchmark datasets, SUN
RGB-D and ScanNet, illustrate the effectiveness of our
methods under the low-cost setting of WI3D scenarios.

2. Related Work

In this section, we first briefly review existing methods for
class-incremental detection in 2D and 3D. Then, we intro-
duce work on weakly-supervised 3D detection and the de-
sign of existing 3D object detectors.

Class-Incremental Detection explores the task of incre-
mentally learning and detecting new classes over time while
preserving the original capabilities of the detector as much
as possible. [14, 28, 34, 49] have made great efforts to
class-incremental image object detection. Concurrently,
several attempts for class-incremental 3D detection are pro-
posed. SDCoT [55] proposes a static-dynamic co-teaching
method for class-incremental 3D object detection. DA-
CIL [58] proposes a 3D domain adaptive class-incremental
object detection framework with a dual-domain copypaste
augmentation method to adapt the domain gradually. Re-
cent work I3DOD [24] proposes a task-shared prompts
mechanism to learn the matching relationships between the
object localization information and category semantic in-
formation for class-incremental 3D object detection. In this
paper, we explore a new paradigm, WI3D, to study how
2D knowledge enables a 3D detector to learn novel objects
continually, without the reach for labor-consuming 3D an-
notations for the novel classes.

Weakly-Supervised 3D Detection studies a way to train a
3D detector without detailed instance annotations. BR [48]
proposes to train 3D detectors using a few key points, such
as object centers. WyPR [40] develops an approach that
relies solely on scene-level class labels for training 3D de-
tection models. Additionally, SESS [56] further proposes a
semi-supervised 3D detection framework with a novel per-
turbation scheme. Recently, OV-3DET [30] and CoDA [1]
introduce open-vocabulary 3D object detection, which uti-
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Figure 2. The challenge of generating accurate 3D pseudo-
labels from 2D predictions. (1) Projection Migration occurs due
to the background pixels within a 2D bounding box, causing the
displacement of the 3D bounding box compared with the ground-
truth label (marked as green). (2) Scale Ambiguity. Due to the
sparse representation of object surfaces, the pseudo labels (marked
as red) generated cannot encompass the entire table legs. (3) Over-
lapped Boxes arise when aggregating pseudo labels from multi-
view images.

lizes a pre-trained 2D model to generate pseudo labels for
3D detectors. However, both OV-3DET [30] and CoDA [1]
focus on associating each class-agnostic bounding box with
a relevant text prompt by computing similarities in the clas-
sification head, which can’t handle the problems of incre-
mental localization and recognition of emerging objects in
the scene. In addition, how to acquire accurate 3D pseudo
labels from 2D predictions remains unexplored in these ap-
proaches. In this paper, we study the potential of utiliz-
ing the visual foundation model for weakly incremental 3D
detection by learning from denoised pseudo labels and re-
gional concept representation.

3D Object Detectors requires a model to localize objects of
interest from a 3D scene input. [4, 29, 32, 37, 54] manage
to operate directly on the point clouds for 3D object detec-
tion. VoteNet [37] and H3DNet [54] achieve end-to-end 3D
object detection based on sampling, grouping, and voting
operators designed especially for point clouds. 3DETR [32]
and GroupFree3D [29] extend the transformer [43] architec-
ture to 3D object detection. In our paper, we adopt the mod-
ified VoteNet [37] proposed by SDCoT [55] as our detection
backbone and explore how to extend a base 3D detector
with the ability to detect objects of novel classes through
the off-the-shelf foundation models.

3. Methodology

In Sec. 3.1, we define the task setting of WI3D and ana-
lyze the noise of 3D pseudo labels directly generated from
2D predictions. Then, we provide the overview of our dual-
teaching framework for WI3D in Sec. 3.2, which supervises
the student with both the denoised pseudo labels from teach-
ers (Sec. 3.3) and concept representation learning in feature
space (Sec. 3.4). Finally, we offer the training objectives in
Sec. 3.5.

3.1. Problem Definition

Task Definition. Given a well-trained 3D detector capable
of localizing and recognizing base category set Cbase from
point cloud, WI3D extends its capacity to detecting a larger
category set Call = Cbase ∪Cnovel with only visual prompts
for Cnovel from off-the-shelf 2D models.

Coarse Pseudo Labels Generation. To generate novel-
class labels for S3D without point-level annotations, we em-
ploy a strategy similar to that described in [30], leveraging
predictions from a cost-free 2D teacher T 2D. Specifically,
we first project the point cloud onto the image plane via the
projection matrix and select points within each 2D bound-
ing box. DBSCAN [13] is then adopted to segment points
within each 2D box into multiple clusters, based on the den-
sity of points. After that, we drop the clusters that contain
fewer points than 1/10 of the number of points in that 2D
box, which ensures the generation of a tight 3D instance
mask. The cluster with the largest population is selected,
and PCA is used to calculate a coarse bounding box, in-
cluding its center, size, and rotation angle.

Noise Analysis. However, it is worth noting that straight-
forward clustering cannot precisely distinguish targets from
noisy points, resulting in the following challenges when
generating 3D pseudo labels from 2D predictions: Projec-
tion Migration: As shown in Fig. 2(a), background pix-
els within 2D bounding boxes lead to the displacement of
the 3D bounding box. (2) Scale Ambiguity: As shown
in Fig. 2(b), the scale ambiguity problem often arises be-
cause 3D sensors capture only sparse points on an ob-
ject’s surface, leading to inaccurate dimension estimations
for the entire object. (3) Overlapped Boxes: As shown
in Fig. 2(c), duplicated estimations on the same instance
will occur when fusing multi-frame predictions (e.g. the
red and yellow pseudo labels represent the predicted results
from two consecutive frames, respectively). To reduce noise
in the generated 3D bounding boxes, we propose a novel
pseudo label refinement module that utilizes coarse pseudo
labels from the clustering algorithm and context informa-
tion from the point cloud.

3.2. Pipeline Overview

Our pipeline is initialized with a base 3D detector T 3D,
which is capable of detecting Cbase. As is shown in Fig. 3, in
order to train a 3D detector S3D for both incrementally de-
tecting novel classes and retaining base knowledge without
any reach of 3D annotations, we seek supervision from both
pseudo labels and feature space. More accurate 3D pseudo
labels become within reach for S3D by further adopting the
proposed pseudo label refinement module in Sec. 3.3. Ad-
ditionally, cross-modal knowledge transfer and intra-modal
knowledge distillation in Sec. 3.4 serve as great feature-
level supervision for concept learning across both base and
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Figure 3. The overview of our framework. We train a 3D student detector S3D on (1) 3D pseudo labels and (2) visual concept repre-
sentations generated by both the inter-modal teacher T 2D , and intra-modal teacher T 3D . Specifically, 3D point cloud and paired images
are used as inputs, with the vision foundation model T 2D employed to detect novel classes in the images. The 3D pseudo labels, which
directly supervise S3D , are generated by denoising and blending the predictions of T 2D and T 3D . Concurrently, the visual concept repre-
sentation learning includes cross-modal knowledge transfer for novel class and reweighting knowledge distillation for base classes. During
inference, S3D takes the point cloud as input and predicts objects for both base and novel classes. Color is used for visualization only.

novel classes.

3.3. Pseudo Label Refinement

To generate more precise 3D pseudo labels from 2D pre-
dictions, we propose a novel class-agnostic Pseudo Label
Refinement(PLR) module. As depicted in Fig. 4, PLR takes
coarse bounding boxes and the encoded contextual infor-
mation from the point cloud as input and generates refined
pseudo labels. This module focuses on modeling intrinsic
relationships among coarse pseudo labels and interacting
with contextual information. By incorporating relative de-
pendencies from pseudo labels and rich information within
the context, PLR enhances object localization in 3D scenar-
ios.

Box-aware Feature Aggregation (BFA). Inspired by the
query learning in DETRs [2, 5, 6, 32], our model learns the
positional relationships among different proposals using a
multi-head self-attention network. In practice, we utilize
a box encoder, Ebox, composed of several fully connected
layers, to extract positional information for all bounding
boxes. These box-aware features are then transformed into
query, key, and value inputs through linear layers. The self-
attention network then computes an attention map that dy-
namically models the interrelationships between boxes, al-
lowing the model to aggregate features for enhancing the

representation of proposals.

Box-Context Interaction (BCI). Given that context from
point clouds can provide rich spatial information and global
features, our box-context querying benefits from the multi-
head cross-attention mechanism, which facilitates informa-
tion passing between the box-aware features and the context
embedding. Specifically, we use a lightweight point cloud
encoder [36], EPN , to encode global information from the
input scene p̃. The output of EPN is then transformed by
two separate linear layers to form the key and value in-
puts. By using box-aware features as queries interacting
with context embedding, crucial context features for pro-
posals are effectively captured to refine the pseudo labels.

The output from the feed-forward network (FFN) is then
fed into a residual predictor, consisting of fully connected
layers, to estimate the residual coordinates for each pro-
posal. To address the issue of box overlap, we further pro-
pose a method to improve the reliability of each 3D pseudo
label by incorporating an additional Binary Classification
Header (BCH). The BCH takes the output of the FFN as
input and generates a binary probability, determining the
validity of each pseudo label. During training, we employ
the Hungarian algorithm [19] to match each annotation with
a corresponding pseudo label. Proposals that successfully
match an annotation are assigned a binary probability of
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presence (labeled as 1) and absence (labeled as 0). Con-
versely, unmatched pseudo labels are marked with a proba-
bility of 0 for presence and 1 for absence. During inference,
the bounding box is considered valid only when the proba-
bility of presence exceeds the probability of absence.

Since PLR is class agnostic, we can train it on base
classes and apply it to novel classes during incremental
learning, without additional training.

3.4. Concept Representation Learning

Beyond the denoising module for generating high-quality
3D pseudo boxes explicitly, we introduce auxiliary objec-
tives to enhance the student’s representation learning capa-
bility in an implicit way.

Cross-modal Knowledge Transfer. Compared to sparse
point clouds, images possess rich texture features, offering
significant advantages in expressing visual semantic infor-
mation. However, directly projecting 3D proposals onto a
single-view image plane to construct 3D-2D region pairs
can result in different 3D boxes pointing to the same or
nearby image regions, making it difficult to learn distinctive
feature representations when they serve as a source of super-
vision. To this end, we propose Cross-modal Knowledge
Transfer (CKT) to help the student learn robust feature rep-
resentations. Inspired by [25], we frame the cross-modal
feature transfer as a matching problem and use bipartite
matching to align region-level features across point clouds
and images.

In practice, we project the 3D bounding box generated
by S3D onto the corresponding image B3D→2D

i and build
the matching matrix by calculating IoU between the pro-
jected 3D box with 2D predictionsB2D

j generated by T 2D.
The cost function for bipartite matching can be formulated
as follows:


max

∑
i

∑
j

mij ∗ IoU(B3D→2D
i , B2D

j )

∑
i

mij = 1,
(1)

where mij ∈ {0, 1} indicates whether it matches, and IoU
represents the intersection over union. Then a pre-trained
image encoder E2D (i.e. CLIP [38]) is used to extract the
features of T 2D’s predictions B2D

i from images, denoted
as:

F 2D
j = E2D(B2D

j ). (2)

For 3D proposal B3D
i paired with corresponding B2D

j , we
feed the proposals’ features F 3D

i in B3D
i into an MLP-

based projection head H3D, to encode the 3D proposal
features into the same feature space of F 2D

j , denoted as

Multi-Head
Cross-Attention

Multi-Head
Self-Attention

Feed Foward 
Network

Refined
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Context Embedding

Residual
Predictor

 Binary 
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Filter

Box Encoder

Coarse 
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Figure 4. The design of Pseudo Label Refinement(PLR). PLR
encodes initial coarse 3D bounding boxes and contextual infor-
mation from the point cloud to generate refined pseudo labels. It
utilizes a lightweight transformer specifically designed for aggre-
gating box-aware features and facilitating box-context interaction.
Additionally, PLR includes a residual predictor to decouple fea-
tures and predict coordinate offsets for proposals, as well as a bi-
nary classification header to ensure the reliability of pseudo labels.
Color is used for visualization only.

F 3D′

i = H3D(F 3D
i ). Finally, we design a cross-modal

knowledge transferring loss based on the negative cosine
similarity [8]:

Lckt = −
∑

i∈I,j∈J

F 3D′

i

∥F 3D′∥2
∗

F 2D
j

∥F 2D∥2
, (3)

where I and J represent the number of 3D proposals and 2D
predictions, respectively.

Intra-modal Base Knowledge Distillation. To alleviate
forgetting issues, existing works [55, 58] use knowledge
distillation [16] to preserve learned knowledge. However,
previous work usually utilizes all the predicted responses
and treats knowledge equally, failing to capture discrimi-
native proposal features in sparse and cluttered point cloud
scenes. In this work, we propose Reweighting Knowledge
Distillation(RKD), which selectively distills features from
the old teacher model to address the challenge of catas-
trophic forgetting.

Specifically, we employ an MLP-based classification
head, which takes features from regions of interest as inputs
and produces objectness scores oi for all proposals. We in-
troduce reweighting modulation factors, αi, which dynami-
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cally adjusts the contribution of each proposal to the distilla-
tion loss based on the objectness scores oi. This modulation
factors αi is defined as:

αi =
eoi∑K
i=1 e

oi
, (4)

where K is the total number of proposals. In RKD, αi is uti-
lized to modulate the traditional knowledge distillation loss,
which compares the predictions of student model against
those of teacher model. The distillation loss, Lrkd, is com-
puted as follows:

Lrkd =
1

K

[ ∑
i∈ΦB

αi(||FS
i − FT

i ||2 + ||lSi − lTi ||2)

]
,

(5)

where ΦB is the set of indices of base-class proposals; Fi

and li are the features and classification logits of the ith
proposal, respectively; the superscripts S and T denote the
student and teacher models.

3.5. Training Objectives

Base Training. We train the modified VoteNet [55] (i.e.
teacher model T 3D) on base class annotations with the de-
tection loss Ldet [37], which is defined as

Ldet = α1Lvote + α2Lobj + α3Lbox + α4Lsem−cls. (6)

Here, α1, α2, α3, α4 are set as 1, 0.5, 1, 0.2, and Lvote,
Lobj , Lbox, Lsem−cls stands for vote regression, proposal
objectness classification, box regression, and proposal se-
mantic classification respectively. Note that we also train
PLR on Cbase in this stage, where LPLR = Lbox.

Weakly Incremental Learning. The supervision of the
WI3D comes in two folds: explicit detection training on the
pseudo labels generated by T 2D and T 3D with Ldet, and
concept representation learning in the feature space, which
includes novel-class knowledge transfer, denoted as Lckt,
and base-class knowledge distillation, represented by Lrkd.
The loss function can be defined as

L = β1Ldet + β2Lckt + β3Lrkd. (7)

Here, β1, β2, β3 are set as 1, 10, 5 heuristically.

4. Experiments
We first introduce the datasets, metrics, and implementa-
tion details for weakly incremental 3D object detection in
Sec. 4.1. Then, we compare our methods with different
baseline approaches and prior arts in Sec. 4.2. Afterward,
we take out ablation studies to study the effectiveness of
the proposed components in Sec. 4.3. Finally, we showcase
some visualization results in Sec. 4.4.

4.1. Datasets, Metrics, and Implementation Details

Datasets. Following previous works on class-incremental
3D detection [24, 55, 58], we conduct experiments on two
widely used datasets, SUN RGB-D [42] and ScanNet [11].
SUN-RGBD consists of 10,335 single-view RGB-D scans,
where 5,285 are used for training, and 5,050 are for val-
idation. Each scan is annotated with rotated 3D boxes.
ScanNet includes 1,201 training samples and 312 validation
samples reconstructed from RGB-D sequences. We split the
full category set into two non-overlapped subsets into Cbase
and Cnovel according to [55].

Metrics. To compare the performance of different ap-
proaches under incremental settings, we adopt mAPbase,
mAPnovel, and mAPall as abbreviations for mean Average
Precision (mAP) under an IoU threshold of 0.25 for base
classes, novel classes, and overall performance.

Modification on VoteNet. While VoteNet [37] is recog-
nized for its efficiency in 3D object detection, its reliance
on random sub-sampling and fixed prediction scores dur-
ing training make it unsuitable for continually incorporating
novel classes. To address these constraints, we modify the
original VoteNet by the principles of SDCoT [55]. The key
modifications include: 1) reusing indices of sampled points
in the base model; 2) altering the final layer to separate cat-
egory predictions from spatial predictions and dynamically
updating the classifier’s weights for novel classes.

More Implementation Details. The input of our student
and intra-modal teacher is a point cloud P ∈ RN×3 repre-
senting a 3D scene, where N is set as 20,000 and 40,000 re-
spectively for SUN RGB-D and ScanNet. We use Ground-
ing Dino [26], a robust zero-shot image detector capable
of generating high-quality boxes and labels with free-form
text, as the inter-modal teacher. We feed the image and
novel-class text prompts (category 1, ..., category N) into
Grounding Dino [26] to detect novel-class objects, select-
ing the proposals with box confidence greater than 0.35 and
class confidence above 0.25 as pseudo labels. The PLR
comprises just one layer, incorporating multi-headed atten-
tion with four heads and a two-layer MLP with 128 hidden
dimensions. Following [55], the base training lasts for 150
epochs using an Adam optimizer [17] with a batch size of
8, and a learning rate of 10−3 decaying to 10−4 and 10−5 at
the 80th and 120th epoch respectively. During weakly in-
cremental learning, we copy weights from T 3D to initialize
the student model S3D, and optimize S3D under the super-
vision of both refined pseudo labels and feature space. Dur-
ing both training stages, we evaluate S3D every 10 epochs.
Each experiment is conducted on a single RTX3090 GPU.
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Table 1. Weakly-incremental 3D object detection (mAP@0.25) on SUN RGB-D validation set. All methods listed are first trained
on base classes |Cbase| = 10− |Cnovel| before incremental learning novel classes |Cnovel|. ↑ means the higher, the better.

Method |Cnovel| = 3 |Cnovel| = 5 |Cnovel| = 7
mAPbase ↑ mAPnovel ↑ mAPall ↑ mAPbase ↑ mAPnovel ↑ mAPall ↑ mAPbase ↑ mAPnovel ↑ mAPall ↑

base-training 53.84 - - 58.54 - - 50.88 - -
fine-tuning 1.02 35.41 11.34 1.11 32.98 17.05 0.13 27.25 19.12

freeze-and-add 53.05 9.99 40.13 56.29 5.99 31.21 47.11 1.95 15.50
39.64 45.38 41.36 49.27 34.08 41.68 49.75 25.83 33.00

Ours:
WI3D 41.82 51.01 44.58 51.79 43.07 47.43 51.26 35.37 40.14

Upper Bounds:
3D-GT 44.82 67.69 51.68 54.27 58.89 56.58 55.10 56.73 56.24

Table 2. Weakly-incremental 3D object detection (mAP@0.25) on ScanNet validation set. All methods listed are first trained on base
classes |Cbase| = 18− |Cnovel| before incremental learning novel classes |Cnovel|. ↑ means the higher, the better.

Method |Cnovel| = 6 |Cnovel| = 9 |Cnovel| = 12
mAPbase ↑ mAPnovel ↑ mAPall ↑ mAPbase ↑ mAPnovel ↑ mAPall ↑ mAPbase ↑ mAPnovel ↑ mAPall ↑

base-training 51.01 - - 58.37 - - 64.70 - -
fine-tuning 1.66 27.42 10.24 2.42 20.72 11.57 3.96 17.32 12.87

freeze-and-add 50.33 1.96 34.21 58.10 2.08 30.09 63.30 1.56 22.14
38.97 23.45 33.80 47.46 20.07 33.77 51.99 16.83 28.55

Ours:
WI3D 41.75 31.49 38.33 49.18 29.75 39.47 52.34 26.71 34.85

Upper Bounds:
3D-GT 52.85 61.31 55.67 59.40 51.73 55.56 63.59 51.40 55.46

4.2. Comparison with Existing Methods

Since there is no prior method that directly works around
WI3D, we mainly compare our method with several base-
lines, including: 1) Base-training directly train the 3D de-
tector on base classes. 2) Fine-tuning tune the whole model
(except the base classifier) and a new classifier (randomly
initialized) for the Cnovel. 3) Freeze-and-add freeze the
backbone, followed by adding a new classification head and
training only the new head on novel classes. Additionally,
we modify the training of SDCoT [55] to fit our weakly in-
cremental learning setting. In practice, we additionally in-
troduce the process of clutter and projecting to SDCoT [55]
to generate 3D pseudo labels from 2D predictions for novel-
class learning. For a fair comparison, all the training set-
tings, e.g., learning rate, optimizer, batch size, etc., are the
same for all experiments.

To make thorough evaluations, we compare our method
with all the mentioned methods under different weakly
class-incremental settings on SUN RGB-D (Tab. 1) and
ScanNet (Tab. 2), which include: a) |Cnovel| < |Cbase|;
b) |Cnovel| = |Cbase|; c) |Cnovel| > |Cbase|. One shall
notice that under different settings, the baseline meth-
ods either lead to catastrophic forgetting or failure to
learn novel concepts. For instance, when we evaluate
the methods on SUN RGB-D with |Cnovel| = 5, fine-
tuning only achieves 1.11 mAPbase, and freeze-and-add
achieves 5.99 mAPnovel. The former suffers from se-

vere catastrophic forgetting on base classes, while the lat-
ter cannot learn new classes effectively. Additionally, it
can be shown that our method can also surpass SDCoT,
which achieves 49.27% mAPbase, 34.08% mAPnovel and
41.68%mAPall when |Cnovel| = 5, while our framework
achieves 51.79% mAPbase, 43.07%mAPnovel(+8.99%),
47.43% mAPall(+5.75%) under the same task setting on
SUN RGB-D dataset. Compared to SDCoT, which expe-
riences significant performance degradation when introduc-
ing novel classes, our method maintains a balance between
base and novel classes, achieving superior performance
across a variety of class-incremental scenarios. These phe-
nomena are prevalent and can be observed through experi-
ments conducted on both datasets in Tab. 1 and Tab. 2.

4.3. Ablation Study and Analysis

In this section, we organize ablation studies to study the
effectiveness of the proposed components. Without further
specification, the following experiments are conducted on
SUN RGB-D under the |Cnovel| = 5 setting.

Robustness to Different 2D Foundation Models. To
validate the robustness of our approach for different 2D
teachers, we employed four distinct teachers in our frame-
work: “Faster R-CNN” [15], “FastSAM” [57], “Ground-
ing Dino” [26], and 2D human annotations (“2D Oracle”).
Specifically, we train “Faster R-CNN” [15] using 2D object
bounding boxes from the SUN RGB-D dataset [42]. Vision
foundation models such as “FastSAM” [57] and “Ground-
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Table 3. Robustness to different 2D foundation models. We organize ablation studies to validate the robustness of our method to different
2D teachers. “Vanilla” denotes the baseline without PLR (details in Sec. 3.3), CKT and RKD (details in Sec. 3.4).

Model Bacgbone Vanilla Ours
mAPbase ↑ mAPnovel ↑ mAPall ↑ mAPbase ↑ mAPnovel ↑ mAPall ↑

Faster RCNN [15] RN50 47.72 24.82 36.27 51.21 34.14 42.68
Fast-SAM [57] YOLOv8 47.63 29.71 38.67 51.13 41.71 46.42

Grounding Dino [26] Swin-B 47.78 32.16 39.97 51.79 43.07 47.43
2D-Oracle - 50.38 34.58 42.48 53.14 46.79 49.97

Table 4. Effectiveness of PLR. We analyze whether the removal
of the pseudo label refinement module affects weakly incremental
learning performance on the SUN RGB-D dataset. “-” denotes the
absence of PLR.

Pseudo Label Denosing mAPbase ↑ mAPnovel ↑ mAPall ↑
- 50.44 35.62 43.03
NMS [33] 50.78 36.35 43.57
PLR w/o BCH 51.32 41.46 46.39
PLR 51.79 43.07 47.43

Table 5. Analysis of BFA and BCI. The model achieves the best
results only when both the box-aware feature aggregation (BFA)
and box-context interaction (BCI) are taken into account.

BFA BCI mAPbase ↑ mAPnovel ↑ mAPall ↑
✓ × 50.11 39.28 44.70
× ✓ 50.45 41.37 45.91
✓ ✓ 51.79 43.07 47.43

ing Dino” [26] are directly used to infer on these images
without any fine-tuning. “2D Oracle” represents the re-
sults annotated by human experts on images. The results
in Tab. 3 illustrate improvements achieved by our approach
with different 2D teachers, particularly in recognizing new
classes of objects. For instance, when using existing de-
tectors such as Faster RCNN [15], our approach shows a
+3.49% improvement on base classes, +9.32% on novel
classes, and +6.41% across all categories. For general-
purpose foundation models like Grounding Dino [26], it
achieves a +4.01% improvement on the base classes and
a +10.91% on novel classes. Furthermore, our method
achieves a +7.49% improvement across all categories when
applied to manually annotated 2D labels, demonstrating that
continuous training of the 3D detector using vision founda-
tion models is a feasible option.

Analysis of PLR. To make a better comparison, we include
several baseline methods, including directly training with
coarse pseudo labels (“-”), Non-Maximum Suppression
[33] (“NMS”), and Pseudo Label Refinement without the
Binary Classification Head (“PLR w/o BCH”) in Tab. 4. It
can be seen that the full model of our proposed PLR effi-

ciently improves the detection performance of novel classes
(+7.45% mAPnovel) compared to using coarse pseudo la-
bels. Since NMS [33] is initially designed to drop dupli-
cated box estimations, it cannot handle the challenge of
noisy pseudo labels generated from 2D box estimations
well. Additionally, BCH can efficiently select pseudo-
labels with higher quality, and further improve the detection
performance (+1.61% mAPnovel and +1.04% mAPall).

Analysis of BFA and BCI. In Tab. 5, we investigate
the roles of the Box-aware Feature Aggregation and Box-
Context Interaction in pseudo label refinement. We notice
that using either BFA or BCI alone will severely downgrade
the detection performance, as each component is insuffi-
cient to provide adequate information to refine the coarse
3D pseudo boxes. The designed PLR module effectively
leverages spatial relationships between proposals provided
by BFA, as well as contextual information from the point
cloud via BCI, resulting in optimal detection performance.
By integrating both components, we observe significant im-
provements compared to using a single one, with an in-
crease of +3.79% and +1.7% in mAPnovel respectively.

Analysis of CKT. In Tab. 6, we compare our proposed
Cross-modal Knowledge Transfer with two variants: one
that solely relies on projection without instances matching
between image and point cloud (“CKT w/o Match”), and a
baseline method (“-”) without Lckt. One can see that the
strategy relying merely on projection (”CKT w/o Match”)
performs worse than the baseline method, with a decrease
of 0.47% in mAPnovel. This decline is attributed to overlap-
ping 3D projections onto a single-view image plane, which
hampers learning of distinctive features when used for su-
pervision. Meanwhile, our proposed matching-based CKT
is able to help S3D learn robust novel knowledge represen-
tations ( +1.34% mAPnovel).

Analysis of RKD. We conduct experiments in Tab. 7 to
compare the effectiveness of our proposed Reweighting
Knowledge Distillation with other commonly used knowl-
edge distillation strategies. To be specific, [16] computes
the Kullback-Leibler (KL) divergence, while [55] computes
the l2 distance of the semantic logits for each proposal be-
tween the teacher and student model. As shown in Tab. 7,
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Figure 5. Visualization of detection results. Our proposed method is able to generate tight bounding boxes for both novel classes and
base classes in these complex and diverse scenes. 3D ground truth annotations for these scenes are marked for base (marked as green) and
novel (marked as red) classes respectively.

Table 6. The performance of cross-modal knowledge transfer
(CKT) by bipartite matching. We compare the CKT utilizing
bipartite matching with the unmatched approach. “-” denotes the
absence of CKT.

Strategy mAPbase ↑ mAPnovel ↑ mAPall ↑
- 51.57 41.73 46.65
CKT w/o Match 51.65 41.26 46.46
CKT 51.79 43.07 47.43

our proposed RKD achieves a higher performance for both
base (51.79 mAPbase) and novel (43.07 mAPnovel) classes.

Table 7. Effectiveness of reweighting knowledge distillation
(RKD) for weakly incremental 3D object detection. We com-
pare our proposed RKD with other commonly used knowledge
distillation manner. “-” denotes that no distillation technology is
used.

Distillation mAPbase ↑ mAPnovel ↑ mAPall ↑
- 50.01 40.76 45.39
Hinton et. al. 50.89 41.12 46.01
Zhao et. al. 51.07 42.37 46.72
RKD 51.79 43.07 47.43

4.4. Qualitative Results

We showcase some qualitative results of our proposed meth-
ods on SUN RGB-D [42] and ScanNet [11] in Fig. 5. One

can see that our proposed method is capable of generating
tight bounding boxes for both novel and base classes.

5. Conclusions and Limitations
In this paper, for the first time, we attempt to address weakly
incremental 3D object detection, dubbed WI3D, which is
a new approach introducing both the continuous localiza-
tion and recognization ability of novel classes to a well-
trained 3D detector through off-the-shelf vision founda-
tion models. By learning from both inter-modal and intra-
modal teachers, we propose (1) a novel pseudo-label refine-
ment module to improve the quality of 3D pseudo labels,
and (2) concept representation learning in feature space for
both base and novel classes. Experiments on SUN-RGBD
and ScanNet demonstrate that our proposed framework sur-
passes all baselines, including the previous approach to
class-incremental 3D object detection. We fervently aspire
that our endeavors in the realm of label-efficient 3D class-
incremental learning tasks will spark inspiration and fuel
future explorations in this community.
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